\begin{tabbing} $\forall$$X$, $Y$:${\it ik}$:LocKnd fp$\rightarrow$ Top, ${\it ik}$:LocKnd. \\[0ex]interface{-}union($X$;$Y$)(${\it ik}$) \\[0ex]$\sim$ \\[0ex]($\lambda$$s$,$v$. if ${\it ik}$ $\in$ dom($X$) \\[0ex]then \=if ${\it ik}$ $\in$ dom($Y$)\+ \\[0ex]then \=case $X$(${\it ik}$)($s$,$v$)\+ \\[0ex]o\=f inl($x$) =$>$ inl inl $x$ \+ \\[0ex]$\mid$ inr($x$) =$>$ case $Y$(${\it ik}$)($s$,$v$) of inl($x$) =$>$ inl (inr $x$ ) $\mid$ inr($x$) =$>$ inr $x$ \-\-\\[0ex]else case $X$(${\it ik}$)($s$,$v$) of inl($x$) =$>$ inl inl $x$ $\mid$ inr($x$) =$>$ inr $x$ \\[0ex]fi \-\\[0ex]else case $Y$(${\it ik}$)($s$,$v$) of inl($x$) =$>$ inl (inr $x$ ) $\mid$ inr($x$) =$>$ inr $x$ \\[0ex]fi ) \end{tabbing}